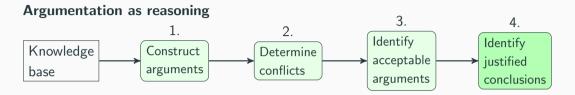
Computational Approaches to Reasoning in Structured Argumentation

Tuomo Lehtonen

November 16, 2025

KR Early Career Award 2025


Aalto University, Finland

- ▶ Argumentation: the process of concluding the most reasonable over contradictory and uncertain viewpoints
 - ▷ Daily life, science, law, politics, recreation,...

- ▶ Argumentation: the process of concluding the most reasonable over contradictory and uncertain viewpoints
 - ▷ Daily life, science, law, politics, recreation,...
- ▷ Computational/formal argumentation
 - Decision support: medical, legal, consumer
 - ▷ Debate analysis

Argumentation as reasoning

- > Abstract argumentation (AFs): step 3 (and 4), arguments and conflicts are input
- Structured argumentation formalizes all steps
 - > Arguments do have a structure
 - ▷ AFs might miss dependencies

Argumentation as reasoning 1. 2. 3. 4. Identify acceptable arguments conflicts arguments conclusions

- ▷ Abstract argumentation (AFs): step 3 (and 4), arguments and conflicts are input
- Structured argumentation formalizes all steps
 - Arguments do have a structure
- > My focus on two central structured argumentation formalisms
 - ▷ Assumption-based argumentation (ABA)
 - ▷ Abstract rule-based argumentation (ASPIC+)

Outline

- 1. Brief introduction to ABA
- 2. Why to not construct AFs: ABA reasoning
- 3. "But ASPIC+ requires AF construction!"
- 4. Not anymore

- \triangleright ABA framework: Assumptions A, rules R and contraries (to assumptions)
- ightharpoonup A set of assumptions $S\subseteq \mathcal{A}$ attacks an assumptions a if $S\models_{\mathcal{R}} \overline{a}$

Consider: assumptions $A = \{a, b, c, d\}$, rules $R = \{x \leftarrow a, b\}$, and contraries $\overline{c} = x, \overline{d} = c$

- \triangleright ABA framework: Assumptions A, rules R and contraries (to assumptions)
- ightharpoonup A set of assumptions $S\subseteq \mathcal{A}$ attacks an assumptions a if $S\models_{\mathcal{R}} \overline{a}$

Consider: assumptions $A = \{a, b, c, d\}$, rules $R = \{x \leftarrow a, b\}$, and contraries $\overline{c} = x, \overline{d} = c$

Task: find a *stable* set of assumptions (i.e. a set that attacks all other sets)

 $\triangleright \{a, b, d\}$ is stable

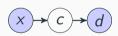
- \triangleright ABA framework: Assumptions \mathcal{A} , rules \mathcal{R} and contraries (to assumptions)
- ightharpoonup A set of assumptions $S\subseteq \mathcal{A}$ attacks an assumptions a if $S\models_{\mathcal{R}} \overline{a}$

Consider: assumptions
$$A = \{a, b, c, d\}$$
, rules $R = \{x \leftarrow a, b\}$, and contraries $\overline{c} = x, \overline{d} = c$

Task: find a *stable* set of assumptions (i.e. a set that attacks all other sets)

$$\triangleright \{a, b, d\}$$
 is stable

Equivalently, construct AF:

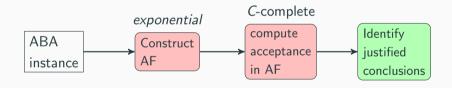

- \triangleright ABA framework: Assumptions \mathcal{A} , rules \mathcal{R} and contraries (to assumptions)
- ightharpoonup A set of assumptions $S\subseteq \mathcal{A}$ attacks an assumptions a if $S\models_{\mathcal{R}} \overline{a}$

Consider: assumptions $A = \{a, b, c, d\}$, rules $R = \{x \leftarrow a, b\}$, and contraries $\overline{c} = x, \overline{d} = c$

Task: find a *stable* set of assumptions (i.e. a set that attacks all other sets)

 $\triangleright \{a, b, d\}$ is stable

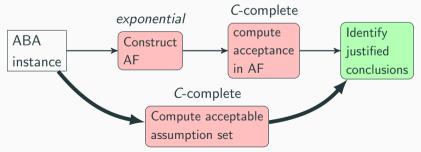
Equivalently, construct AF:



Find stable extension; standard AF reasoning task

Computing argumentative reasoning

Number of arguments is not polynomially bounded


- [Strass et al. 2019]
- \triangleright Typically acceptance problems are hard (i.e. below C=NP or harder)

Computing argumentative reasoning

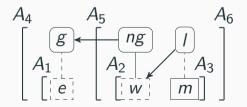
▶ Number of arguments is not polynomially bounded

- [Strass et al. 2019]
- \triangleright Typically acceptance problems are hard (i.e. below C=NP or harder)
 - ▷ For ABA, same complexity as AFs
 - ▶ For ASPIC⁺... find out in 5 minutes
- ightarrow Construct arguments pprox grow the input exponentially for no (computational) gain

Contributions: ABA

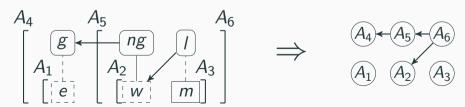
- ▷ First algorithms for ABA with modern constraint solving
- > Avoid performance bottleneck of constructing arguments
- > This is possible with the original assumption-set definition of ABA
- ▷ Open source implementations bitbucket.org/coreo-group/aspforaba

Joint work with Wallner and Järvisalo published in AAAI'19, and TPLP and JAIR in 2021

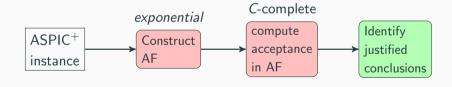

Performance for ABA

Problem	Approach	#timeouts	Running times (s)	
			mean	sum
ABA admissible	ASPforABA	0	0.018	31
credulous acceptance	ABAGRAPH	200	8.464	12932
	ABA2AF	364	13.990	19078
ABA stable	ASPforABA	0	0.008	38
skeptical acceptance	aba2af	648	10.942	43386
ABA grounded	ASPforABA	0	0.127	220
acceptance	ABAGRAPH	210	9.979	15148
ABA preferred	ASPforABA	0	0.333	226
solution enumeration	ABA2AF	255	6.082	2585
ABA complete	ASPforABA	0	0.005	1
solution enumeration	ABAplus	9	15.287	1697
ABA ideal	ASPforABA	0	0.025	3
find the ideal set	ABAplus	18	22.490	2293

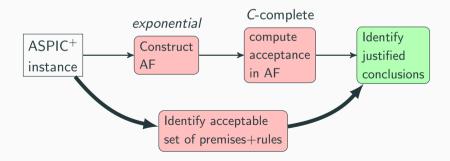
Our algorithms won ABA track of ICCMA 2023 and (more narrowly) 2025


Differences to ABA

- ▷ support defeasible rules, and certain premises
- > Typically include preferences among premises and rules
- - ▷ attack on premise (as in ABA),
 - ▷ on a (defeasible) rule, and
 - ▷ on the head of a (defeasible) rule

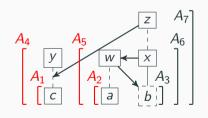


Differences to ABA


- ▷ support defeasible rules, and certain premises
- > Typically include preferences among premises and rules
- > Three attack types, which succeed depending on preferences
 - ▷ attack on premise (as in ABA),
 - ⊳ on a (defeasible) rule, and
 - ▷ on the head of a (defeasible) rule

▶ Problem: ASPIC⁺ defined in terms of AFs

- ▶ Problem: ASPIC⁺ defined in terms of AFs
- \rightarrow We characterized acceptance in terms of set of premises+rules (P,D) rather than arguments
 - ▷ Analogy to assumption-set definition of ABA


- ▶ Problem: ASPIC⁺ defined in terms of AFs
- \rightarrow We characterized acceptance in terms of set of premises+rules (P,D) rather than arguments

 - ▷ Enables proofs of the computational complexity of claim acceptance

We characterized acceptance in terms of set of premises+rules (P,D) instead of arguments

- \triangleright conditions on (P, D) s.t. the set of arguments based on (P, D) is an extension
- \triangleright Key property to show: arguments from (P, D) defeating a premise p (resp. defeasible rule d) implies that they defeat any argument using p (resp. d)

Stable extension $\{A_1, A_2, A_4, A_5\}$.

Corresponding $(P, D) = (\emptyset, \{c \Rightarrow y, a \Rightarrow w\})$. Arguments from (P, D), i.e. $\{A_1, A_2, A_3, A_4\}$ defeats b and any argument using it

Contributions: ASPIC⁺ complexity of credulous/skeptical acceptance (DC/DS)

semantics	preferences				
	no^1	weakest-link ²	last-link		
complete (CO)	NP/coNP-c	?	NP/coNP-c		
preferred (PR)	NP/Π_2^P -c	?	NP/Π_2^P -c		
stable (ST)	NP/coNP-c	Σ_2^P/Π_2^P -c	NP/coNP-c		
grounded (GR)	in P	?	in P		

[Lehtonen, Wallner, Järvisalo, KR'20] [Lehtonen, Wallner, Järvisalo, KR'22]

[Lehtonen, Odekerken, Wallner, Järvisalo, KR'24]

¹Reductions from ASPIC⁺ to ABA were shown under some semantics, implying complexity results.

²The "key thing" from last slide does not hold under weakest-link principle.

Performance for ASPIC⁺ versus an AF construction approach

PyArg (construct+solve AF)

	#solved (mean run time over solved (s))							(s))
#atoms		C-ST		C-CO		C-AD	D	S-ST
50	2	(20.8)	2	(20.0)	1	(34.7)	2	(19.5)
>50	0	_	0	_	0	_	0	_

Our ASP approach

			Ou	I ASI	ap	proacii		
		#solve	d (r	nean run 1	time	over solve	ed (s))
#atoms	DC-ST DC-CO		DC-AD		DS-ST			
50	5	(0.1)	5	(0.2)	5	(0.2)	5	(0.1)
100	5	(0.3)	5	(0.5)	5	(0.5)	5	(0.3)
200	5	(1.7)	5	(2.9)	5	(3.0)	5	(1.7)
400	5	(11.6)	5	(14.7)	5	(16.9)	5	(9.6)
800	5	(64.8)	5	(87.6)	5	(97.9)	5	(59.3)
1200	5	(175.5)	5	(226.4)	5	(239.0)	5	(181.6)
1600	5	(422.6)	4	(518.9)	4	(543.4)	5	(450.0)
1700	3	(473.8)	2	(587.9)	1	(591.1)	3	(486.4)
1800	2	(569.5)	0	_	0	_	3	(568.8)
1900	0	_	0	_	0	_	0	_

bitbucket.org/coreo-group/aspforaspic

Contributions: ASPIC⁺ application

▶ We developed efficient algorithms for problems related to incomplete information; enabled by recharacterizing ASPIC⁺

> [Odekerken, Lehtonen, Borg, Wallner, and Järvisalo, KR 2023] [Odekerken, Lehtonen, Wallner, and Järvisalo, JAIR 2025]

bitbucket.org/coreo-group/raspic

Summary

Contributions

- ▶ Characterization of central ASPIC⁺ semantics without constructing AF
 - **Description** Complexity results
- ▶ Declarative algorithms for ASPIC⁺ and ABA, open source implementations

Summary

Contributions

- ▶ Characterization of central ASPIC⁺ semantics without constructing AF
 - **Description** Complexity results
- ▶ Declarative algorithms for ASPIC⁺ and ABA, open source implementations
- ▷ Arguments have a structure
- \triangleright Omitted ABA topics: preferences, non-flat, default logic fragment, more efficient ABA \rightarrow AF translations

Summary

Contributions

- ▶ Characterization of central ASPIC⁺ semantics without constructing AF
 - **Complexity results**
- ▶ Declarative algorithms for ASPIC⁺ and ABA, open source implementations
- ▷ Arguments have a structure
- Domitted ABA topics: preferences, non-flat, default logic fragment, more efficient ABA→AF translations

Hear more in Constraints session after this: SAT approach to ABA

Thank you for your attention!

Thanks to

- ▷ PhD supervisors: Matti Järvisalo and Johannes P. Wallner
- ▷ Other coauthors on ABA/ASPIC⁺: Daphne Odekerken, Anna Rapberger, Markus Ulbricht, Francesca Toni, Andreas Niskanen, Masood Feyzbakhsh Rankooh, AnneMarie Borg